Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Toxicol Chem ; 43(4): 807-820, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38146914

RESUMO

Propranolol is a heavily prescribed, nonspecific beta-adrenoceptor (bAR) antagonist frequently found in wastewater effluents, prompting concern over its potential to adversely affect exposed organisms. In the present study, the transcriptional responses of 4, 5, and 6 days postfertilization (dpf) ±1 h fathead minnow, exposed for 6, 24, or 48 h to 0.66 or 3.3 mg/L (nominal) propranolol were characterized using RNA sequencing. The number of differentially expressed genes (DEGs) was used as an estimate of sensitivity. A trend toward increased sensitivity with age was observed; fish >7 dpf at the end of exposure were particularly sensitive to propranolol. The DEGs largely overlapped among treatment groups, suggesting a highly consistent response that was independent of age. Cluster analysis was performed using normalized count data for unexposed and propranolol-exposed fish. Control fish clustered tightly by age, with fish ≥7 dpf clustering away from younger fish, reflecting developmental differences. When clustering was conducted using exposed fish, in cases where propranolol induced a minimal or no transcriptional response, the results mirrored those of the control fish and did not appreciably cluster by treatment. In treatment groups that displayed a more robust transcriptional response, the effects of propranolol were evident; however, fish <7 dpf clustered away from older fish, despite having similar numbers of DEGs. Increased sensitivity at 7 dpf coincided with developmental milestones with the potential to alter propranolol pharmacokinetics or pharmacodynamics, such as the onset of exogenous feeding and gill functionality as well as increased systemic expression of bAR. These results may have broader implications because toxicity testing often utilizes fish <4 dpf, prior to the onset of these potentially important developmental milestones, which may result in an underestimation of risk for some chemicals. Environ Toxicol Chem 2024;43:807-820. Published 2023. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Cyprinidae , Poluentes Químicos da Água , Animais , Propranolol/toxicidade , Propranolol/metabolismo , Cyprinidae/fisiologia , Poluentes Químicos da Água/análise
2.
Environ Toxicol Chem ; 41(11): 2708-2720, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35920346

RESUMO

Metformin, along with its biotransformation product guanylurea, is commonly observed in municipal wastewaters and subsequent surface waters. Previous studies in fish have identified metformin as a potential endocrine-active compound, but there are inconsistencies with regard to its effects. To further investigate the potential reproductive toxicity of metformin and guanylurea to fish, a series of experiments was performed with adult fathead minnows (Pimephales promelas). First, explants of fathead minnow ovary tissue were exposed to 0.001-100 µM metformin or guanylurea to investigate whether the compounds could directly perturb steroidogenesis. Second, spawning pairs of fathead minnows were exposed to metformin (0.41, 4.1, and 41 µg/L) or guanylurea (1.0, 10, and 100 µg/L) for 23 days to assess impacts on reproduction. Lastly, male fathead minnows were exposed to 41 µg/L metformin, 100 µg/L guanylurea, or a mixture of both compounds, with samples collected over a 96-h time course to investigate potential impacts to the hepatic transcriptome or metabolome. Neither metformin nor guanylurea affected steroid production by ovary tissue exposed ex vivo. In the 23 days of exposure, neither compound significantly impacted transcription of endocrine-related genes in male liver or gonad, circulating steroid concentrations in either sex, or fecundity of spawning pairs. In the 96-h time course, 100 µg guanylurea/L elicited more differentially expressed genes than 41 µg metformin/L and showed the greatest impacts at 96 h. Hepatic transcriptome and metabolome changes were chemical- and time-dependent, with the largest impact on the metabolome observed at 23 days of exposure to 100 µg guanylurea/L. Overall, metformin and guanylurea did not elicit effects consistent with reproductive toxicity in adult fathead minnows at environmentally relevant concentrations. Environ Toxicol Chem 2022;41:2708-2720. © 2022 SETAC. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Cyprinidae , Metformina , Poluentes Químicos da Água , Animais , Feminino , Masculino , Metformina/toxicidade , Águas Residuárias , Poluentes Químicos da Água/análise , Reprodução
3.
Ecotoxicol Environ Saf ; 236: 113428, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35366562

RESUMO

The objective of this study was to characterize vitellogenin (VTG) protein in male fathead minnow (Pimephales promelas) mucus compared with more conventional measures in plasma and mRNA isolated from liver. To assess the intensity and duration of changes in mucus VTG concentrations, male fathead minnows were exposed to 17α-ethinylestradiol (EE2) for 7 days with a subsequent depuration period of 14 days. The experiment was conducted in a flow-through system to maintain a consistent concentration of EE2 at a nominal EC50 concentration of 2.5 ng/L and high concentration of 10 ng/L as a positive control. Mucus, plasma and liver were sampled at regular intervals throughout the study. Relative abundance of vtg mRNA increased after 2 days of exposure and returned to control levels after 4 days of depuration. VTG protein concentration displayed similar induction kinetics in both mucus and plasma, however, it was found to be significantly increased after 2 days of exposure using the mucus-based assays and 7 days with the plasma-based assay. Significantly elevated levels of VTG were detected by both assays throughout the 14-day depuration period. The elimination of the laborious plasma collection step in the mucus-based workflow allowed sampling of smaller organisms where blood volume is limiting. It also resulted in significant gains in workflow efficiency, decreasing sampling time without loss of performance.


Assuntos
Cyprinidae , Vitelogeninas , Animais , Cyprinidae/metabolismo , Fígado/metabolismo , Masculino , Muco/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Vitelogeninas/metabolismo
4.
Environ Toxicol Chem ; 41(2): 448-461, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34888930

RESUMO

The fathead minnow is a widely used model organism in environmental toxicology. The lack of a high-quality fathead minnow reference genome, however, has severely hampered its uses in toxicogenomics. We present the de novo assembly and annotation of the fathead minnow genome using long PacBio reads, Bionano and Hi-C scaffolding data, and large RNA-sequencing data sets from different tissues and life stages. The new annotated fathead minnow reference genome has a scaffold N50 of 12.0 Mbp and a complete benchmarking universal single-copy orthologs score of 95.1%. The completeness of annotation for the new reference genome is comparable to that of the zebrafish GRCz11 reference genome. The fathead minnow genome, revealed to be highly repetitive and sharing extensive syntenic regions with the zebrafish genome, has a much more compact gene structure than the zebrafish genome. Particularly, comparative genomic analysis with zebrafish, mouse, and human showed that fathead minnow homologous genes are relatively conserved in exon regions but had strikingly shorter intron regions. The new fathead minnow reference genome and annotation data, publicly available from the National Center for Biotechnology Information and the University of California Santa Cruz genome browser, provides an essential resource for aquatic toxicogenomic studies in ecotoxicology and public health. Environ Toxicol Chem 2022;41:448-461. Published 2021. This article is a U.S. Government work and is in the public domain in the USA.


Assuntos
Cyprinidae , Peixe-Zebra , Animais , Cyprinidae/genética , Ecotoxicologia , Genoma , Camundongos , Software , Peixe-Zebra/genética
5.
Aquat Toxicol ; 235: 105807, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33838496

RESUMO

The number of chemicals requiring risk evaluation exceeds our capacity to provide the underlying data using traditional methodology. This has led to an increased focus on the development of novel approach methodologies. This work aimed to expand the panel of gene expression-based biomarkers to include responses to estrogens, to identify training strategies that maximize the range of applicable concentrations, and to evaluate the potential for two classes of small non-coding RNAs (sncRNAs), microRNA (miRNA) and piwi-interacting RNA (piRNA), as biomarkers. To this end larval Pimephales promelas (96 hpf +/- 1h) were exposed to 5 concentrations of 17α- ethinylestradiol (0.12, 1.25, 2.5, 5.0, 10.0 ng/L) for 48 h. For mRNA-based biomarker development, RNA-seq was conducted across all concentrations. For sncRNA biomarkers, small RNA libraries were prepared only for the control and 10.0 ng/L EE2 treatment. In order to develop an mRNA classifier that remained accurate over the range of exposure concentrations, three different training strategies were employed that focused on 10 ng/L, 2.5 ng/L or a combination of both. Classifiers were tested against an independent test set of individuals exposed to the same concentrations used in training and subsequently against concentrations not included in model training. Both random forest (RF) and logistic regression with elastic net regularizations (glmnet) models trained on 10 ng/L EE2 performed poorly when applied to lower concentrations. RF models trained with either the 2.5 ng/L or combination (2.5 + 10 ng/L) treatments were able to accurately discriminate exposed vs. non-exposed across all but the lowest concentrations. glmnet models were unable to accurately classify below 5 ng/L. With the exception of the 10 ng/L treatment, few mRNA differentially expressed genes (DEG) were observed, however, there was marked overlap of DEGs across treatments. Overlapping DEGs have well established linkages to estrogen and several of the 81 DEGs identified in the 10 ng/L treatment have been previously utilized as estrogenic biomarkers (vitellogenin, estrogen receptor-ß). Following multiple test correction, no sncRNAs were found to be differentially expressed, however, both miRNA and piRNA classifiers were able to accurately discriminate control and 10 ng/L exposed organisms with AUCs of 0.83 and 1.0 respectively. We have developed a highly discriminative estrogenic mRNA biomarker that is accurate over a range of concentrations likely to be found in real-world exposures. We have demonstrated that both miRNA and piRNA are responsive to estrogenic exposure, suggesting the need to further investigate their regulatory roles in the estrogenic response.


Assuntos
Estrogênios/toxicidade , MicroRNAs , Poluentes Químicos da Água/toxicidade , Animais , Biomarcadores/metabolismo , Cyprinidae/fisiologia , Etinilestradiol , Expressão Gênica , RNA Mensageiro , RNA Interferente Pequeno , Vitelogeninas/genética
6.
Toxicon X ; 8: 100060, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33235993

RESUMO

The canonical mode of action (MOA) of microcystins (MC) is the inhibition of protein phosphatases, but complete characterization of toxicity pathways is lacking. The existence of over 200 MC congeners complicates risk estimates worldwide. This work employed RNA-seq to provide an unbiased and comprehensive characterization of cellular targets and impacted cellular processes of hepatocytes exposed to either MC-LR or MC-RR congeners. The human hepatocyte cell line, HepaRG, was treated with three concentrations of MC-LR or -RR for 2 h. Significant reduction in cell survival was observed in LR1000 and LR100 treatments whereas no acute toxicity was observed in any MR-RR treatment. RNA-seq was performed on all treatments of MC-LR and -RR. Differentially expressed genes and pathways associated with oxidative and endoplasmic reticulum (ER) stress, and the unfolded protein response (UPR) were highly enriched by both congeners as were inflammatory pathways. Genes associated with both apoptotic and inflammatory pathways were enriched in LR1000. We present a model of MC toxicity that immediately causes oxidative stress and leads to ER stress and the activation of the UPR. Differential activation of the three arms of the UPR and the kinetics of JNK activation ultimately determine whether cell survival or apoptosis is favored. Extracellular exosomes were enrichment of by both congeners, suggesting a previously unidentified mechanism for MC-dependent extracellular signaling. The complement system was enriched only in MC-RR treatments, suggesting congener-specific differences in cellular effects. This study provided an unbiased snapshot of the early systemic hepatocyte response to MC-LR and MC-RR congeners and may explain differences in toxicity among MC congeners.

7.
Environ Toxicol Chem ; 38(11): 2436-2446, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31365144

RESUMO

We describe initial development of microarray-based assays for detecting 4 pyrethroid pesticides (bifenthrin, cypermethrin, esfenvalerate, and permethrin) in water. To facilitate comparison of transcriptional responses with gross apical responses, we estimated concentration-mortality curves for these pyrethroids using flow-through exposures of newly hatched Daphnia magna, Pimephales promelas adults, and 24 h posthatch P. promelas. Median lethal concentration (LC50) estimates were below most reported values, perhaps attributable to the use of flow-through exposures or of measured rather than nominal concentrations. Microarray analysis of whole P. promelas larvae and brains from exposed P. promelas adults showed that assays using either tissue type can detect these pyrethroids at concentrations below LC50 values reported for between 72 and 96% of aquatic species, depending on the pesticide. These estimates are conservative because they correspond to the lowest concentrations tested. This suggests that the simpler and less expensive whole-larval assay provides adequate sensitivity for screening contexts where acute aquatic lethality is observed, but the responsible agent is not known. Gene set analysis (GSA) highlighted several Gene Ontology (GO) terms consistent with known pyrethroid action, but the implications of other GO terms are less clear. Exploration of the sensitivity of results to changes in data processing suggests robustness of the detection assay results, but GSA results were sensitive to methodological variations. Environ Toxicol Chem 2019;38:2436-2446. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America.


Assuntos
Biomarcadores/metabolismo , Cyprinidae/genética , Daphnia/genética , Exposição Ambiental/análise , Piretrinas/toxicidade , Animais , Cyprinidae/crescimento & desenvolvimento , Daphnia/efeitos dos fármacos , Ontologia Genética , Larva/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade
8.
Environ Pollut ; 247: 696-705, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30721860

RESUMO

Although alternative Flame Retardant (FR) chemicals are expected to be safer than the legacy FRs they replace, their risks to human health and the environment are often poorly characterized. This study used a small volume, fish embryo system to reveal potential mechanisms of action and diagnostic exposure patterns for TBPH (bis (2-ethylhexyl)-tetrabromophthalate), a component of several widely-used commercial products. Two different concentration of TBPH were applied to sensitive early life stages of an ecologically important test species, Fundulus heteroclitus (Atlantic killifish), with a well-annotated genome. Exposed fish embryos were sampled for transcriptomics or chemical analysis of parent compound and primary metabolite or observed for development and survival through larval stage. Global transcript profiling using RNA-seq was conducted (n = 16 per treatment) to provide a non-targeted and statistically robust approach to characterize TBPH gene expression patterns. Transcriptomic analysis revealed a dose-response in the expression of genes associated with a surprisingly limited number of biological pathways, but included the aryl hydrocarbon receptor signal transduction pathway, which is known to respond to several toxicologically-important chemical classes. A transcriptional fingerprint using Random Forests was developed that was able to perfectly discriminate exposed vs. non-exposed individuals in test sets. These results suggest that TBPH has a relatively low potential for developmental toxicity (at least in fishes), despite concerns related to its structural similarities to endocrine disrupting chemicals and that the early life stage Fundulus system may provide a convenient test system for exposure characterization. More broadly, this study advances the usefulness of a biological testing and analysis system utilizing non-targeted transcriptomics profiling and early developmental endpoints that complements current screening methods to characterize chemicals of ecological and human health concern.


Assuntos
Retardadores de Chama/toxicidade , Fundulidae/embriologia , Ácidos Ftálicos/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Retardadores de Chama/análise , Fundulidae/metabolismo , Fundulidae/fisiologia , Perfilação da Expressão Gênica , Humanos , Receptores de Hidrocarboneto Arílico/metabolismo , Poluentes Químicos da Água/análise
9.
Environ Toxicol Chem ; 36(10): 2565-2573, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28945943

RESUMO

Over the past decade, the field of molecular biology has rapidly incorporated epigenetic studies to evaluate organism-environment interactions that can result in chronic effects. Such responses arise from early life stage stress, the utilization of genetic information over an individual's life time, and transgenerational inheritance. Knowledge of epigenetic mechanisms provides the potential for a comprehensive evaluation of multigenerational and heritable effects from environmental stressors, such as contaminants. Focused studies have provided a greater understanding of how many responses to environmental stressors are driven by epigenetic modifiers. We discuss the promise of epigenetics and suggest future research directions within the field of aquatic toxicology, with a particular focus on the potential for identifying key heritable marks with consequential impacts at the organism and population levels. Environ Toxicol Chem 2017;36:2565-2573. © 2017 SETAC.


Assuntos
Organismos Aquáticos/efeitos dos fármacos , Epigenômica , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/genética , Organismos Aquáticos/metabolismo , Evolução Biológica , Cromatina/metabolismo , Metilação de DNA/efeitos dos fármacos , Disruptores Endócrinos/toxicidade , Células Germinativas/citologia , Células Germinativas/efeitos dos fármacos , Células Germinativas/metabolismo , Histonas/genética , Histonas/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , RNA não Traduzido/metabolismo
10.
Aquat Toxicol ; 179: 27-35, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27564377

RESUMO

Omics technologies have long since promised to address a number of long standing issues related to environmental regulation. Despite considerable resource investment, there are few examples where these tools have been adopted by the regulatory community, which is in part due to a focus of most studies on discovery rather than assay development. The current work describes the initial development of an omics based assay using 48h Pimephales promelas (FHM) larvae for identifying aquatic exposures to pyrethroid pesticides. Larval FHM were exposed to seven concentrations of each of four pyrethroids (permethrin, cypermethrin, esfenvalerate and bifenthrin) in order to establish dose response curves. Then, in three separate identical experiments, FHM were exposed to a single equitoxic concentration of each pyrethroid, corresponding to 33% of the calculated LC50. All exposures were separated by weeks and all materials were either cleaned or replaced between runs in an attempt to maintain independence among exposure experiments. Gene expression classifiers were developed using the random forest algorithm for each exposure and evaluated first by cross-validation using hold out organisms from the same exposure experiment and then against test sets of each pyrethroid from separate exposure experiments. Bifenthrin exposed organisms generated the highest quality classifier, demonstrating an empirical Area Under the Curve (eAUC) of 0.97 when tested against bifenthrin exposed organisms from other exposure experiments and 0.91 against organisms exposed to any of the pyrethroids. An eAUC of 1.0 represents perfect classification with no false positives or negatives. Additionally, the bifenthrin classifier was able to successfully classify organisms from all other pyrethroid exposures at multiple concentrations, suggesting a potential utility for detecting cumulative exposures. Considerable run-to-run variability was observed both in exposure concentrations and molecular responses of exposed fish across exposure experiments. The application of a calibration step in analysis successfully corrected this, resulting in a significantly improved classifier. Classifier evaluation suggested the importance of considering a number of aspects of experimental design when developing an expression based tool for general use in ecological monitoring and risk assessment, such as the inclusion of multiple experimental runs and high replicate numbers.


Assuntos
Biomarcadores/metabolismo , Expressão Gênica/efeitos dos fármacos , Praguicidas/toxicidade , Piretrinas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Área Sob a Curva , Cyprinidae/crescimento & desenvolvimento , Cyprinidae/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Larva/efeitos dos fármacos , Larva/metabolismo , Praguicidas/análise , Piretrinas/análise , RNA/isolamento & purificação , Curva ROC , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química
11.
BMC Genomics ; 17: 84, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26822894

RESUMO

BACKGROUND: A very large and rapidly growing collection of transcriptomic profiles in public repositories is potentially of great value to developing data-driven bioinformatics applications for toxicology/ecotoxicology. Modeled on human connectivity mapping (Cmap) in biomedical research, this study was undertaken to investigate the utility of an analogous Cmap approach in ecotoxicology. Over 3500 zebrafish (Danio rerio) and fathead minnow (Pimephales promelas) transcriptomic profiles, each associated with one of several dozen chemical treatment conditions, were compiled into three distinct collections of rank-ordered gene lists (ROGLs) by species and microarray platforms. Individual query signatures, each consisting of multiple gene probes differentially expressed in a chemical condition, were used to interrogate the reference ROGLs. RESULTS: Informative connections were established at high success rates within species when, as defined by their mechanisms of action (MOAs), both query signatures and ROGLs were associated with the same or similar chemicals. Thus, a simple query signature functioned effectively as an exposure biomarker without need for a time-consuming process of development and validation. More importantly, a large reference database of ROGLs also enabled a query signature to cross-interrogate other chemical conditions with overlapping MOAs, leading to novel groupings and subgroupings of seemingly unrelated chemicals at a finer resolution. This approach confirmed the identities of several estrogenic chemicals, as well as a polycyclic aromatic hydrocarbon and a neuro-toxin, in the largely uncharacterized water samples near several waste water treatment plants, and thus demonstrates its future potential utility in real world applications. CONCLUSIONS: The power of Cmap should grow as chemical coverages of ROGLs increase, making it a framework easily scalable in the future. The feasibility of toxicity extrapolation across fish species using Cmap needs more study, however, as more gene expression profiles linked to chemical conditions common to multiple fish species are needed.


Assuntos
Transcriptoma/genética , Animais , Cyprinidae/genética , Transcriptoma/efeitos dos fármacos , Transcriptoma/fisiologia , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/genética
12.
Chemosphere ; 144: 366-73, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26383263

RESUMO

17α-ethinylestradiol (EE2) is a synthetic estrogen that is an active ingredient in oral contraception and hormone replacement therapy. Surveys of wastewater treatment plant effluents and surface waters throughout the world have reported EE2 concentrations in the ng/L range, and these low levels can cause significant reproductive effects in fish. This study tested the effects of three environmentally relevant EE2 concentrations: 0.47, 1.54 and 3.92 ng/L using a 21 d short-term reproductive assay to investigate the effects of EE2 on fathead minnow (Pimephales promelas) reproduction. The two highest EE2 concentrations tested in this study caused significant liver gene expression and induction of vitellogenin plasma protein in male fathead minnows. Exposure to 3.92 ng EE2/L increased the production of plasma vitellogenin in the females. Plasma estradiol concentrations were significantly reduced in females exposed to 1.54 and 3.92 ng EE2/L. All three tested concentrations significantly reduced fathead minnow egg production after a 21 d exposure to EE2. The results of this study indicate that the previously reported no observed adverse effect concentration (NOAEC) for EE2 on fathead minnow egg production (1.0 ng/L) may be too high. Because all three treatments resulted in significantly reduced egg production, the lowest observed adverse effect concentration (LOAEC) for EE2 on fathead minnow egg production is 0.47 ng EE2/L. This research estimates a NOAEC for fathead minnow reproduction at 0.24 ng EE2/L following a 21 d exposure. Additionally, induction of vitellogenin is a sensitive indicator of estrogen exposure but does not appear to be predictive of fathead minnow egg production.


Assuntos
Cyprinidae/fisiologia , Estrogênios/toxicidade , Etinilestradiol/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Cyprinidae/sangue , Cyprinidae/genética , Estradiol/sangue , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Nível de Efeito Adverso não Observado , Reprodução/efeitos dos fármacos , Vitelogeninas/sangue
14.
Integr Environ Assess Manag ; 11(4): 674-88, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25779725

RESUMO

There is a great diversity of sources of chemical contaminants and stressors over large geographic areas. Chemical contaminant inputs and magnitude can potentially exhibit wide seasonal variation over large geographic areas. Together, these factors make linking exposure to monitored chemical contaminants and effects difficult. In practice, this linkage typically relies on relatively limited chemical occurrence data loosely coupled with individual effects, and population- or community-level assessments. Increased discriminatory power may be gained by approaching watershed level assessment in a more holistic manner, drawing from a number of disciplines that target endpoints spanning levels of the biological hierarchy. Using the Sacramento River as a case study, the present study aimed to 1) evaluate the performance of new analytical and biomarker tools in a real world setting and their potential for linking occurrence and effect; 2) characterize the effects of geographic and temporal variability through the integration of suborganismal, tissue, and individual level endpoints, as well as extensive chemical analyses; 3) identify knowledge gaps and research needs that limit the implementation of this holistic approach; and 4) provide an experimental design workflow for these types of assessments. Sites were selected to target inputs into the Sacramento River as it transitions from an agricultural to a mixed but primarily urban landscape. Chemical analyses were conducted on surface water samples at each site in both the spring and fall for pesticides, hormones, and active pharmaceutical ingredients (APIs). Active pharmaceutical ingredients were more often detected across sampling events in the fall; however, at the most downstream site the number of analytes detected and their concentrations were greater in the spring, which may be due to seasonal differences in rainfall. Changes in gene and protein expression targeting endocrine and reproductive effects were observed within each sampling event; however, they were inconsistent across seasons. Larval mortality at the most downstream site was seen in both seasons; however, behavioral changes were only observed in the spring. No clear linkages of specific analyte exposure to biological response were observed, nor were linkages across biological levels of organization. This failure may have resulted from limitations of the scope of molecular endpoints used, inconsistent timing of exposure, or discordance of analytical chemistry through grab sampling and longer term, integrative exposure. Together, results indicate a complicated view of the watershed.


Assuntos
Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Poluição Química da Água/estatística & dados numéricos , Comportamento Cooperativo , São Francisco
15.
PLoS One ; 9(12): e114178, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25493933

RESUMO

Fathead minnow and zebrafish are among the most intensively studied fish species in environmental toxicogenomics. To aid the assessment and interpretation of subtle transcriptomic effects from treatment conditions of interest, better characterization and understanding are needed for natural variation in gene expression among fish individuals from lab cultures. Leveraging the transcriptomics data from a number of our toxicogenomics studies conducted over the years, we conducted a meta-analysis of nearly 600 microarrays generated from the ovary tissue of untreated, reproductively mature fathead minnow and zebrafish samples. As expected, there was considerable batch-to-batch transcriptomic variation; this "batch-effect" appeared to differentially impact subsets of fish transcriptomes in a nonsystematic way. Temporally more closely spaced batches tended to share a greater transcriptomic similarity among one another. The overall level of within-batch variation was quite low in fish ovary tissue, making it a suitable system for studying chemical stressors with subtle biological effects. The observed differences in the within-batch variability of gene expression, at the levels of both individual genes and pathways, were probably both technical and biological. This suggests that biological interpretation and prioritization of genes and pathways targeted by experimental conditions should take into account both their intrinsic variability and the size of induced transcriptional changes. There was significant conservation of both the genomes and transcriptomes between fathead minnow and zebrafish. The high degree of conservation offers promising opportunities in not only studying fish molecular responses to environmental stressors by a comparative biology approach, but also effective sharing of a large amount of existing public transcriptomics data for developing toxicogenomics applications.


Assuntos
Cyprinidae/genética , Variação Genética , Transcriptoma , Peixe-Zebra/genética , Animais , Análise de Sequência com Séries de Oligonucleotídeos
16.
Aquat Toxicol ; 152: 353-60, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24813268

RESUMO

Vitellogenin is frequently used as a biomarker of exposure to environmental estrogens due to its specificity and sensitivity. Appropriate incorporation of this biomarker into environmental monitoring and assessment necessitates evaluation of its critical performance parameters. In this study, we characterize the sensitivity of both vitellogenin gene (vtg) mRNA transcripts in liver and protein (VTG) in plasma over a range of concentrations and exposure durations. Male fathead minnows were exposed to 17α-ethynylestradiol (EE2) in a flow-through system for 2, 4 and 7 days at multiple EE2 concentrations in order to provide information regarding the sensitivity of each of these biomarkers to diagnose exposure to this representative estrogen. Measurements of the expression of the vitellogenin gene and protein both reliably detected exposures to EE2 at concentrations of 5ng/l and higher at all time points. Vtg mRNA and plasma VTG appear to have similar sensitivities, though the lower variability in VTG in control fish may make it more sensitive to small changes in expression compared to vtg. For lower concentrations, sensitivity may be improved by increasing exposure duration. A sample size of ∼12 fish was sufficient in many cases to produce a statistically significant increase in vitellogenin. Larger sample sizes may provide more sensitivity at low concentrations, but detecting exposure to estrogens in the lower range of environmentally relevant concentrations may need larger sample sizes. These data will assist in designing experiments that have sufficient statistical power necessary to determine if fish have been exposed to estrogens.


Assuntos
Cyprinidae/fisiologia , Monitoramento Ambiental/métodos , Etinilestradiol/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Vitelogeninas/genética , Poluentes Químicos da Água/toxicidade , Animais , Bioensaio/normas , Cyprinidae/genética , Monitoramento Ambiental/normas , Masculino , Sensibilidade e Especificidade
17.
Environ Toxicol Chem ; 32(8): 1828-34, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23625624

RESUMO

Gamma-aminobutyric acid (GABA) and GABA receptors play an important role in neuroendocrine regulation in fish. Disruption of the GABAergic system by environmental contaminants could interfere with normal regulation of the hypothalamic-pituitary-gonadal axis, leading to impaired fish reproduction. The present study used a 21-d fathead minnow (Pimephales promelas) reproduction assay to investigate the reproductive toxicity of fipronil (FIP), a broad-spectrum phenylpyrazole insecticide that acts as a noncompetitive blocker of GABA receptor-gated chloride channels. Continuous exposure up to 5 µg FIP/L had no significant effect on most of the endpoints measured, including fecundity, secondary sexual characteristics, plasma steroid and vitellogenin concentrations, ex vivo steroid production, and targeted gene expression in gonads or brain. The gonad mass, gonadosomatic index, and histological stage of the gonad were all significantly different in females exposed to 0.5 µg FIP/L compared with those exposed to 5.0 µg FIP/L; however, there were no other significant effects on these measurements in the controls or any of the other treatments in either males and females. Overall, the results do not support a hypothesized adverse outcome pathway linking FIP antagonism of the GABA receptor(s) to reproductive impairment in fish.


Assuntos
Cyprinidae/fisiologia , Sistema Endócrino/efeitos dos fármacos , Inseticidas/toxicidade , Pirazóis/toxicidade , Animais , Bioensaio/métodos , Sistema Endócrino/fisiologia , Feminino , Fertilidade , Gônadas/fisiologia , Masculino , Reprodução/efeitos dos fármacos , Reprodução/fisiologia , Vitelogeninas/metabolismo , Poluentes Químicos da Água/toxicidade , Ácido gama-Aminobutírico/fisiologia
18.
Environ Sci Technol ; 47(3): 1306-12, 2013 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-23305514

RESUMO

Aquatic organisms are exposed to many toxic chemicals and interpreting the cause and effect relationships between occurrence and impairment is difficult. Toxicity Identification Evaluation (TIE) provides a systematic approach for identifying responsible toxicants. TIE relies on relatively uninformative and potentially insensitive toxicological end points. Gene expression analysis may provide needed sensitivity and specificity aiding in the identification of primary toxicants. The current work aims to determine the added benefit of integrating gene expression end points into the TIE process. A cDNA library and a custom microarray were constructed for the marine amphipod Ampelisca abdita. Phase 1 TIEs were conducted using 10% and 40% dilutions of acutely toxic sediment. Gene expression was monitored in survivors and controls. An expression-based classifier was developed and evaluated against control organisms, organisms exposed to low or medium toxicity diluted sediment, and chemically selective manipulations of highly toxic sediment. The expression-based classifier correctly identified organisms exposed to toxic sediment even when little mortality was observed, suggesting enhanced sensitivity of the TIE process. The ability of the expression-based end point to correctly identify toxic sediment was lost concomitantly with acute toxicity when organic contaminants were removed. Taken together, this suggests that gene expression enhances the performance of the TIE process.


Assuntos
Anfípodes/genética , Organismos Aquáticos/genética , Determinação de Ponto Final , Genoma/genética , Testes de Toxicidade , Poluentes Químicos da Água/toxicidade , Anfípodes/efeitos dos fármacos , Animais , Organismos Aquáticos/efeitos dos fármacos , Biomarcadores/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Sedimentos Geológicos/química , Rhode Island , Rios/química
19.
Aquat Toxicol ; 105(3-4): 618-28, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21963592

RESUMO

The hypothalamus-pituitary-gonadal (HPG) axis plays a central role in the maintenance of homeostasis and disruptions in its function can have important implications for reproduction and other critical biological processes. A number of compounds found in aquatic environments are known to affect the HPG axis. In the present study, we used two-dimensional electrophoresis to investigate the proteome of female and male zebrafish brain after 96 h exposure to the fungicide prochloraz. Prochloraz has known effects on a number of key HPG molecules, including antagonism of Cyp17 and Cyp19 (aromatase). Twenty-eight proteins were shown to be differentially expressed in the brains of females and 22 in males. Proteins were identified using LC-MS/MS and identities were examined relative to brain function in the context of changing steroid hormone levels. There was little overlap between sexes in proteins exhibiting differential expression. Proteins with known roles in metabolism, learning, neuroprotection, and calcium regulation were determined to be differentially regulated. Relationships between identified proteins were also examined using Ingenuity Pathway Analysis, and females were shown to exhibit enrichment of several metabolic pathways. We used differentially expressed proteins to establish a putative classifier consisting of three proteins that was able to discriminate prochloraz-exposed from control females. Putatively impacted brain functions and specific protein changes that were observed have the potential to be generalized to other that similarly impact steroid hormone levels.


Assuntos
Encéfalo/efeitos dos fármacos , Fungicidas Industriais/toxicidade , Imidazóis/toxicidade , Proteoma/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Peixe-Zebra/metabolismo , Animais , Biomarcadores/metabolismo , Encéfalo/metabolismo , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Sistema Endócrino/efeitos dos fármacos , Feminino , Proteínas de Peixes/metabolismo , Hormônios/metabolismo , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Masculino , Análise de Componente Principal , Proteômica , Distribuição Aleatória , Fatores Sexuais , Espectrometria de Massas em Tandem
20.
Aquat Toxicol ; 101(1): 196-206, 2011 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-20974496

RESUMO

Pesticides are nearly ubiquitous in surface waters of the United States, where they often are found as mixtures. The molecular mechanisms underlying the toxic effects of sub-lethal exposure to pesticides as both individual and mixtures are unclear. The current work aims to identify and compare differentially expressed proteins in brains of male fathead minnows (Pimephales promelas) exposed for 72 h to permethrin (7.5 µg/L), terbufos (57.5 µg/L) and a binary mixture of both. Twenty-four proteins were found to be differentially expressed among all three treatments relative to the control using an ANOVA followed by a Dunnett's post hoc test (p ≤0.05). One protein was found to be differentially expressed among all treatment groups and one protein was in common between the terbufos and the mixture group. Fifteen spots were successfully sequenced using LC-MS/MS sequencing. Proteins associated with the ubiquitin-proteasome system, glycolysis, the cytoskeleton and hypoxia were enriched. As a second objective, we attempted to establish protein expression signatures (PES) for individual permethrin and terbufos exposures. We were unable to generate a useable PES for terbufos; however, the permethrin PES was able to distinguish between control and permethrin-exposed individuals in an independent experiment with an accuracy of 87.5%. This PES also accurately classified permethrin exposed individuals when the exposure occurred as part of a mixture. The identification of proteins differentially expressed as a result of pesticide exposure represent a step forward in the understanding of mechanisms of toxicity of permethrin and terbufos. They also allow a comparison of molecular responses of the binary mixture to single exposures. The permethrin PES is the first step in establishing a method to determine exposures in real-world scenarios.


Assuntos
Encéfalo/metabolismo , Cyprinidae/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/efeitos dos fármacos , Compostos Organotiofosforados/toxicidade , Permetrina/toxicidade , Praguicidas/toxicidade , Análise de Variância , Animais , Encéfalo/efeitos dos fármacos , Cromatografia Líquida , Masculino , Análise de Sequência de DNA , Espectrometria de Massas em Tandem , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA